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ABSTRACT 

Ideally, health monitoring of new, complex 
engineering systems should occur from initial 
operation to decommissioning.  Health 
monitoring typically involves a suite of 
modules, including system monitoring, fault 
detection, fault diagnostics, and system 
prognostics.  However, for systems which 
have not yet operated, this is challenging.  
Most available health monitoring modules are 
empirically based, meaning they are derived 
from available historic data.  For new system 
designs, such data simply does not exist.  This 
research proposes an adaptive modeling 
system which initially builds empirical models 
from high-fidelity simulated data.  This data 
suffers from the common problems of data 
simulation caused by complicated physical 
models mechanisms and simplifying 
assumptions made in model development.  As 
actual system data becomes available, the 
empirical models adapt in an automated and 
intelligent way to account for real-world, 
nominal data relationships.   
 A key challenge in automatically adaptive 
empirical models lies in differentiating 
between faulted operation and nominal 
operation which is not well-described by the 
physics-based data.  Nominal operation may 
extend beyond the simulated data for many 
reasons: the system may be operating in un-
anticipated environments; the assumptions 
made in model development may cause 
inaccuracies in the data; or the relationships 
modeled may simply be incorrect.  Traditional 
fault detection methods such as those using the 
sequential probability ratio test are not able to 
distinguish between unexpected nominal 
operation and truly faulted operation.  
However, the main benefit of using adaptive 
models lies in their ability to accurately learn 

expanded nominal relationships while 
detecting and differentiating faulted 
conditions.  For the purposes of accurately 
adapting a monitoring system, a principal 
component-based method is proposed to 
distinguish between these two cases. 
 As faults are detected, fault diagnostics 
and system prognostics are employed to 
provide a complete health monitoring system.  
The proposed adaptive monitoring system is 
applied to simulated data of the newly 
designed International Reactor Innovative and 
Secure (IRIS) nuclear plant. *  

1. INTRODUCTION 

Development of traditional health monitoring systems 
requires either large amounts of operational data 
spanning all expected operating conditions or high 
fidelity first principle models (FPMs) which capture the 
physics of failure relationships.  However, in some 
cases neither of these is available.  New designs of 
complex systems may be too complicated to adequately 
model using first principle approaches, but operational 
data is not available until the system has been in service 
for some time.  Monitoring these systems can be 
challenging.  An adaptive monitoring method is 
proposed which extends traditional auto-associative 
kernel regression (AAKR) models.  A principal 
component analysis (PCA) model is used to 
differentiate between faulted operations and expanded 
nominal operations.  If a fault is detected, traditional 
fault diagnostics and prognostics methods are applied 
to determine the fault type and RUL, respectively.   
 This research applies the proposed health 
monitoring system to the new Westinghouse designed 
International Reactor Innovative and Secure (IRIS) 
                                                             
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited.  
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nuclear plant, shown in Figure 1.  The IRIS design is a 
medium-sized Grid Appropriate Reactor (GAR) 
designed for implementation in developing electric 
grids. These reactors have additional monitoring 
concerns over nuclear plants built in developed nations; 
these needs include increased availability, longevity 
between refueling and maintenance cycles, and safety 
and proliferation resistance.  Additionally, these 
reactors are designed to operate remotely in countries 
with limited infrastructure and skilled personnel.   

 
Figure 1: IRIS Reactor Design 

 The following section discusses the methodology 
used to build an adaptive health monitoring system.  An 
application of the system to simulations of the IRIS 
reactor is given.  Finally, conclusions and areas of 
ongoing work are outlined.   

2. METHODOLOGY 

A full health monitoring system consists of several 
modules, as shown in Figure 2 (Callan et al., 2006; 
Jardine et al., 2006; Kothamasu et al., 2006). Data 
collected from a system of interest is monitored for 
deviations from normal behavior.  Monitoring can be 
accomplished through a variety of methods, including 
FPMs, empirical models, and statistical analysis (Hines 
et al., 2006).  The monitoring module can be 
considered an error correction routine; the model gives 
its best estimate of the true value of the system 
variables.  These estimates are compared to the data 
collected from the system to generate a time-series of 
residuals.  Residuals characterize system deviations 
from normal behavior and can be used to determine if 
the system is operating in an abnormal state.  A 
common test for anomalous behavior is the Sequential 
Probability Ratio Test (SPRT) (Wald, 1945).  This 
statistical test considers a sequence of residuals and 
determines if they are more likely from the distribution 
that represents normal behavior or a faulted 
distribution, which may have a shifted mean value or 

altered standard deviation from the nominal 
distribution.  If a fault is detected, it is often important 
to identify the type of fault; systems will likely degrade 
in different ways depending on the type of fault, and 
different prognostic models will be needed.  Fault 
diagnostic results are used to identify the appropriate 
prognostic model.  Expert systems, such as fuzzy rule-
based systems, are common fault diagnosers.  Finally, a 
prognostic model is employed to estimate the 
Remaining Useful Life (RUL) of the system.  This 
model may include information from the original data, 
the monitoring system residuals, and the results of the 
fault detection and isolation routines. 

 
Figure 2: Full Health Monitoring System 

 For monitoring new equipment designs, the 
traditional monitoring models and fault detection 
routines are not sufficient.  An adaptive AAKR model 
is proposed which is initially populated with data 
simulated from a high fidelity physics model and 
adapts to actual nominal operating data as it is collected 
while still correctly detecting faulted conditions 
(Humberstone et al., 2009a).  The following sections 
describe the adaptive non-parametric model (ANPM), 
the expanded operating condition monitoring method, 
fault detection and diagnostics, and, finally, the 
prognostic method used.   

2.1 Adaptive Monitoring Models 

The ANPM is developed as an automated method for 
hybrid model adaptation; it acts as a bridge between 
data generated from FPMs and actual operational data.  
The proposed ANPM builds on the AAKR model 
(Hines et al., 2007a).  This model is attractive for many 
reasons.  AAKR is primarily an error-correction 
method; when presented with a new observation, it 
attempts to determine the “correct” sensor readings 
based on previous experience.  Additionally, it is a non-
parametric, memory-based model, which means that 
the model consists primarily of a matrix of exemplar 
memory vectors, X.  The vectors contained in X can be 
chosen through a number of different algorithms: 
vector ordering, min-max selection, clustering methods, 
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etc (Garvey and Hines, 2006).  The goal of any of these 
methods is to select a set of memory vectors which 
adequately covers the operating region, both in range 
and in intermediary relationships.  When a new 
observation is presented to the model, its “correct” 
value is determined as a weighted sum of the most 
similar exemplar vectors.  These weights are based on 
the Euclidean distance metric and the Gaussian kernel; 
the weight of the ith exemplar vector is given by (1):  
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where xj is the jth sensor value for the new observation, 
Xi,j is the jth sensor value for the ith exemplar vector, and 
h is the kernel bandwidth.  The prediction of the 
“correct” vector of sensor values is given by (2): 
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where Xi is the ith exemplar vector.  Because the model 
is based entirely on the memory matrix, new 
observations can be appended to it in order to be 
included in future calculations.  This makes adaptation 
quick and straightforward.   
 A three-phase model development method is 
proposed for the ANPM (Figure 3).  During the first 
phase, observed signal values are candidates for 
replacing the simulated FPM data.  Because this 
adaptation is automatic, it is crucial to determine if 
observations that are not well described by the 
simulated data are due to faulted operation or expanded 
operating conditions.  Expanded conditions may occur 
for many reasons: the system may be operating outside 
the expected region, the assumptions made in model 
development may be inaccurate, or the sensor noise 
may contaminate the nominal data to the point of 
appearing faulted.  The proposed PCA method to 
differentiate between true faults and expanded 
conditions is discussed in the following section.  After 
model adaptation is complete, the data vectors from 
FPM simulation should be completely replaced by the 
observed data, resulting in an AAKR model built 
entirely on nominal operation data.  Then, a full fuel 
cycle (in the case of a nuclear power plant) is suggested 
for model validation.  During this time, the 
performance of the model should be closely evaluated 
to determine if it has been adequately adapted from the 
first principle data to the actual operating data.  If 
model performance is determined to be poor, the model 
should re-enter the adaptation phase to expand the 
memory matrix coverage of the operational region.  
Finally, the third phase covers the remaining reactor 
operation to the next maintenance activity.  This 
process may be repeated after refueling or maintenance 

activities to adapt the model to slight deviations in 
sensor relationships due to recalibration or 
maintenance. 
  During the first phase of model development, new 
observations of nominal operation are appended to the  

 
Figure 3: Model Adaptation 

memory matrix as they are available.  As new exemplar 
vectors are added, it becomes necessary to remove the 
simulated exemplars so that future predictions are 
based solely on the observed behaviors.  This is 
accomplished by simply deleting the simulated 
exemplars which have been weighted most heavily in 
the past, indicating that they are most similar to the 
added observations.  A new vector is used to track the 
sum of the weights for each of the simulated exemplars.  
At designated intervals, the simulated exemplar with 
the highest sum of weights is deleted; this interval is set 
such that all of the simulated exemplars are deleted by 
the end of the adaptation phase. 

2.2 Fault Detection and Expanded Condition 
Monitoring 

Fault detection within the adaptive framework is 
particularly challenging.  The model must be elastic 
enough to allow for some deviation of nominal 
operating data from the simulated first-principle data; 
this is expected due to inaccuracies in the simulation.  
However, the model must also be able to determine 
which observations are the result of faulted operation to 
ensure these observations are not added to the memory 
matrix.  The SPRT is statistically shown to be one of 
the fastest methods for identifying deviations in 
residuals.  However, in an adaptive framework, the 
sequential nature of the SPRT is a hindrance.  Because 
small faults may not be identified immediately, the 
SPRT would allow the ANPM to adapt to a growing 
fault without ever detecting it.  This has long been one 
of the major drawbacks of automated adaptation.  
However, a principal component analysis (PCA) based 
method is proposed which can determine if a new 
observation vector is nominal, faulty, or the result of an 
expanded operating condition.  A full discussion of the 
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PCA Expanded Condition Monitoring (ECM) system is 
available in (Humberstone et al., 2009b). 
 PCA transforms data into an orthogonal vector set 
which facilitates dimensionality reduction.  By 
choosing the most useful Principal Components (PCs), 
generally considered those with the most variance, the 
data set can be reduced to a smaller number of inputs.  
When a new observation is gathered, it is transformed 
to the PC space to determine if it is consistent with the 
data seen in the past.  Two metrics are used to 
determine how well a new observation fits in to the PC 
model:  Hotelling’s T2 statistic and the Q-statistic.  
Figure 4 shows a two-dimensional PC model of three-
dimensional data to illustrate the two statistics.  
Hotelling’s T2 statistic describes variation within the 
model, as shown in the figure on the left.  Conversely, 
the Q-statistic measures the deviation of the new 
observation outside the model.   

 
Figure 4: PCA Statistics 

 The T2- and Q-statistics can be used to determine if 
a new observation is in one of three classes: expected 
nominal operation, expanded nominal operation, or 
faulted operation.  A PC model is developed using the 
simulated first-principle data, and limits on acceptable 
T2- and Q-statistic values are determined from this data.  
If both statistics for a new observation are within these 
limits, the observation is the result of expected nominal 
operation.  If the T2-statistic is outside the expected 
limit, but the Q-statistic is within its limit, the new 
observation is due to expanded nominal operations.  
This large T2-statistic indicates that the new 
observation deviates from the center of the model more 
than what has been seen in the past, but the acceptable 
Q-statistic indicates that it is still described by the 
underlying relationships in the model.  Finally, if the Q-
statistic is outside of its designated limit, regardless of 
the value of the T2-statistic, the observation is 
considered faulted and is not included in the model 
adaptation.  The large Q-statistic indicates that the new 
observation deviates significantly from the model 
relationships seen in the past.  It is important to note 
that traditional PCA is a linear data analysis technique.  
The method described here is applicable to data which 
enjoys linear or nearly-linear relationships, at least 
within some region.  The methodology may be 
extended to non-linear systems through Kernel PCA; 

however, that is beyond the scope of the current work.  
The interested reader is referred to (Humberstone, 
2010) for more information on the use of Kernel PCA 
for non-linear systems. 

2.3 Fault Diagnostics 

After a fault has been detected using the proposed PCA 
method, an expert system or classification algorithm 
may be used to determine the fault type.  The 
diagnostic system utilized in this research uses 
monitoring system residuals to determine fault type.  
The faulted system residuals are compared to those 
contained in a database of historical residual signatures 
to determine under which fault the system is operating.  
Similar systems may be built using additional features, 
such as the results of the PCA fault detection routine, 
including PC values or T2- and Q-statistics.  For the 
current application, this added complexity was 
unnecessary.    

2.4 System Prognostics 

The final step in the proposed health monitoring system 
is prognostics.  The prognostic module contains a bank 
of models, one for each fault type. The results of the 
fault identification routine determine which prognostic 
model is used to make a RUL estimate for the system.  
These estimates are continuously updated as the system 
runs.   
 For nuclear power plants and other expensive, 
safety-critical systems, an individual-based, or Type III 
(Hines et al., 2007b), prognostic estimate is ideal.  This 
research utilizes a bank of General Path Model (GPM) 
prognostic models.   A full prognostic module would 
likely include many types of prognostic algorithms 
depending on the fault type and its progression to 
failure.  Many prognostic algorithms have been 
proposed and studied (Kothamasu et al., 2006).  The 
results presented here focus on the GPM methodology.   
 GPM was first proposed by Lu and Meeker (1993) 
to move traditional reliability analysis from failure-time 
analysis to failure-process analysis.  The model was 
developed to capitalize on censored test units.  It 
attempts to track degradation as a function of time or 
duty cycles and extrapolate that degradation path to 
some predefined critical failure threshold, giving an 
estimate of when the unit would have failed had testing 
continued.  The GPM reliability methodology has a 
natural extension to estimation of RUL.  If degradation 
of a system or component can be either directly 
measured or inferred, the degradation progression of a 
specific component can be used to estimate its RUL.  
This measure of degradation is termed a prognostic 
parameter.  Methods for automatically identifying an 
optimal prognostic parameter from data have been 
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developed and were utilized here.  The interested reader 
is referred to (Coble, 2010) for more information on 
prognostic parameter identification.   
 GPM analysis begins with some assumption of an 
underlying functional form of the degradation path for 
a specific fault mode.  The degradation of the ith unit at 
time tj is given by (3): 
 

€ 

yij =η(t j ,φ,θi) + εij   (3) 
where φ is a vector of fixed (population) effects, θi is a 
vector of random (individual) effects for the ith 
component, and εij ~ N(0,σ2

ε) is the standard 
measurement error term.  Application of the GPM 
methodology involves several assumptions.  First, the 
degradation data must be describable by a function, η; 
this function may be derived from physics-of-failure 
models or from past degradation data.  In order to fit 
this model, historical degradation data from a 
population of identical components or systems must be 
available, or appropriate data may be simulated.  This 
data should be collected under similar use (or 
accelerated test) conditions and should reasonably span 
the range of individual variations between components.  
Because GPM uses degradation measures instead of 
failure times, it is also not necessary that all historical 
units are run to failure; censored data contains 
information useful to GPM forecasting.  The final 
assumption of the GPM model is that there exists some 
defined critical level of degradation, D, beyond which a 
component no longer meets its design specifications, 
i.e. the component has failed.  Therefore, some 
components should be run to failure in order to quantify 
this degradation level.  Alternatively, engineering 
judgment may be used if the nature of the degradation 
parameter is explicitly known. 
 As data is collected on a faulted unit, the GPM may 
be used to estimate the RUL, as shown in Figure 5.  
Here, the known parametric function is fit to the 
available degradation data to give a unit-specific 
prognostic model.  The fitted parametric model is then 
extrapolated to the degradation threshold to give an 
estimated failure time and corresponding RUL.  For 
systems with very little data or significant noise 
contamination, Bayesian methods may be used to 
include prior information in the model fit.  Including 
this information helps “force” the fitted parametric  

 
Figure 5: Parameter Trending and RUL Estimation 

model to take the shape seen in previous cases.  For a 
complete discussion of Bayesian updating methods in 
the GPM, the interested reader is referred to (Coble and 
Hines, 2009).   
 The following section presents the application of the 
adaptive health monitoring system to the IRIS plant 
design.   

3. APPLICATION AND RESULTS 

The proposed adaptive monitoring and health 
management architecture was applied to the IRIS 
nuclear plant design. The IRIS design is a 
Westinghouse generation IV small- to medium-size 
modular reactor design that has a proposed 335MW 
output. The IRIS reactor is an integral Pressurized 
Water Reactor with eight helical coil steam generators.  
There are a number of advantages that the IRIS reactor 
has over traditional pressurized water reactors; most of 
these are safety related benefits necessary for remote 
operation in developing nations.  Because the IRIS 
reactor is still in the design stage, no actual operation 
data is available.  However, two simulators have been 
developed.  Data obtained from those simulations is 
used in this research.  Because the two simulators do 
not track the same set of sensors, model development 
and evaluation was performed in two phases.  First, the 
nominal condition adaptation of the ANPM was tested 
using a reduced number of sensors to utilize both 
simulators.  Then, the PCA-based expanded operation 
monitoring system was tested using the full data set 
from the high-fidelity simulation.  The two simulators 
and ANPM results are described next. 

3.1 ANPM Results 

 The first simulator, considered to be a low-fidelity 
simulator, was built by researchers at the University of 
Tennessee using MATLAB Simulink® (Li et al., 
2009).  The Simulink model is a modular model which 
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includes the reactor core, the helical coil steam 
generators, and the balance of plant.  In testing the 
adaptation phase of the ANPM model, the results of 
this simulator are considered the first-principle model 
results and are used to seed the original memory 
matrix.     
 The second simulator used was developed by Dr. 
Michael Doster at North Carolina State University 
(NCSU). NCSU has demonstrated experience in 
developing high fidelity, full plant simulators for 
predicting the dynamic response of pressurized water 
reactors during normal and off-normal operational 
conditions. An IRIS specific simulator has been 
developed which includes a model of the IRIS 
Pressurizer, a six delayed neutron group kinetics model, 
a decay heat model and a hot channel/Departure from 
Nucleate  Boiling (DNB) model.  In the IRIS design, 
the steam generators are helical coils, where the 
secondary fluid flows on the tube side of the heat 
exchanger.  Detailed models have been developed to 
describe the dynamics of steam generators of this 
design.   For testing model adaptation, the results of 
this simulator are used as the high fidelity, 
“operational” data.   
 The two simulators share five common sensor 
measurements: hot leg temperature, cold leg 
temperature, feed flow rate and steam flow rate per 
steam generator, and feedwater temperature.  The 
adaptation phase of the ANPM utilized these five, 
highly correlated sensors to illustrate adaptation to 
nominal operating data.  Both simulators generated data 
for a load-following power profile, which is more likely 
in a GAR than steady-state operation.  The load profile 
used is shown in Figure 6.  Figure 7 shows the Steam 
Flow Rate residuals for three models.  The worst 
performer is the model based solely on first-principle 
generated data.  The figure shows that this model was 
not able to predict the behavior during periods of lower 
power demand.  The ANPM residual remains centered 
around zero, indicating that it was able to adapt from 
the low-fidelity first principle model to a more accurate 
model.  Finally, the “final” model is the result of the 
adaptation phase, a model which has completely 
adapted to the collected data and contains no simulated 
exemplars.  This final model has the lowest residuals, 
slightly better than the adapting ANPM model.  The 
mean squared errors of the predictions for all models 
and each of the five sensors are shown in Table 1.   
 

 
Figure 6: Load-Following Power Profile 

 
Figure 7: Model Residuals for Steam Flow Rate 

Table 1: Mean Squared Error of Predictions 

  Sensor Number 

  1 2 3 4 5 

FPM  4.27 0.178 0.899 0.898 0.066 

ANPM  0.0011 0.0011 0.001 0.001 0.0002 

Final  0.00037 0.00027 0.00066 0.00069 0.00016 
 
 These results indicate that the ANPM adapts 
correctly from low-fidelity simulated data to high-
fidelity operating condition data.  However, the ANPM 
must be able to identify observations which result from 
faulted behavior in order to exclude these observations 
from the adapting memory matrix.  To test this feature, 
a larger model was built using thirteen highly 
correlated sensors from the NCSU simulator.  This 
model was used with the proposed PCA-based ECM 
methodology to identify known faulty data.  The NCSU 
simulator was used to generate data with a heat 
exchanger fouling fault.  The generated data includes 
one day per month of operation under the nominal load 
profile for twelve months with increasing fouling levels 
at each month, ranging from 1.4% fouling to 30% 
fouling.  The results of the PCA-based ECM for the 
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first month are shown in Figure 8.  This included only 
1.4% heat exchanger fouling and was not detectable as 
a fault.  However, the second month of this fault, which 
included 3.3% fouling, was identified as faulty (Figure 
9).  For each month following, the PCA-based ECM 
was able to correctly identify the faulted data.   

 
Figure 8: PCA-based ECM for Month 1 

 
Figure 9: PCA-based ECM for Month 2 

 After determining through the proposed ECM 
method or traditional fault detection methods that a 
fault is present, the health monitoring system would 
normally turn to a fault diagnostic routine to identify 
the type of fault experienced.  Due to time constraints 
and the run time of the NCSU simulator, only one fault 
type is currently available.  Integration of a diagnostic 
routine is an area of ongoing work as additional data 
becomes available.  The final step after detecting and 
diagnosing a fault is system prognostics.  The results of 

a prognostic model to track heat exchanger fouling are 
given next. 

3.2 Prognostics 

A GPM prognostic model was used to estimate RUL 
for heat exchanger fouling faults.  This failure mode 
presents an interesting case.  When the plant is 
operating in a lower power demand, the heat exchanger 
is not stressed as highly, and the effects of the fault are 
somewhat muted.  However, when only the periods of 
high power operation and the resulting residuals are 
considered, the fault has a very noticeable trend in the 
Steam Generator Exit Temperature, as shown in Figure 
10.  Again, due to constraints of the simulator, only one 
example of heat exchanger degradation is available.  
However, this example was used to generate additional 
degradation paths to develop a GPM model.   

 
Figure 10: Steam Generator Exit Temperature High 

Power Residuals 

 One hundred generated degradation paths were used 
to develop a GPM model, which the simulated data 
shown above was applied to for testing.  The RUL 
estimation results are shown in Figure 11.  The blue 
line shows the actual system RUL over thirteen months 
of operation. It is traditional to consider the RUL at any 
time before failure to be simply the time between the 
current time and the failure time.  Klinger (1992) shows 
that the assumption that failure time is inversely 
proportional to the degradation rate is valid for systems 
which are autonomous in the variable representing 
time.  The inverse relationship should be accepted for 
systems running under an effectively constant load and 
environment, which is often seen in nuclear power 
plants.    During the first month, operation is nominal 
and no prognostic estimate is made.  As discussed 
previously, during the first month of faulted operation, 
the fault detection routine does not detect the small 
degradation of the heat exchanger; again, no prognostic 
model is activated.  Finally, at the second month of 
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faulted operation, the fault is detected and the 
prognostic algorithm is activated to make RUL 
estimates.  The prognostic model performs well, with 
RUL estimates within 5% of the actual RUL by the 7th 
month of faulted operation, five months before failure.  
As new faults are detected and identified, a bank of 
prognostic models can be developed to account for 
each of the expected faults.  During actual operation of 
similar IRIS plants, if unforeseen faults occur, this 
information can also be incorporated into the fault 
diagnostic and prognostic modules.  In this way, the 
health monitoring system will continue to adapt as 
operating data becomes available and the entire fleet of 
IRIS plants can leverage the experiences of each 
individual reactor.  In an actual prognostic system, a 
Type I, or reliability-based, prognostic model can be 
used to estimate the system RUL before a fault has 
been detected and identified.  This will facilitate full 
life cycle prognostics from beginning of operation, 
through fault detection and identification, to system 
failure.   

 
Figure 11: Heat Exchanger Fouling RUL Estimation 

CONCLUSION  

4.  

Recent efforts have pushed health monitoring 
technologies for legacy nuclear power plants which 
capitalize on the significant amount of data available 
from their operation.  However, as new plants come 
online which differ significantly from current designs, 
these monitoring systems will not be directly 
applicable.  High-fidelity first-principle simulations are 
available for new plant designs, and the existing 
empirical modeling technology can leverage this data to 
provide system monitoring beginning with plant start-
up.  With the addition of an automated adaptation 
method, these models based on simulated first principle 
data will better learn the behaviors and operating 
regions of a specific plant as nominal operational data 

becomes available.  The proposed ECM method helps 
ensure that only nominal operations are learned and 
faults are identified.  This adaptation technology is not 
only useful for new plant designs, but could also be 
applied to restarts after refueling outages when sensor 
relationships routinely change slightly due to 
recalibration and maintenance activities.   
 This research presented key components in a full 
health monitoring system.  Beginning with an adaptive 
monitoring module, the ANPM, the ability to adapt to 
nominal operations and to detect faults using the 
proposed PCA-based ECM method was illustrated.  
After the detection of a fault, a GPM prognostic model 
was applied to estimate system RUL.  This information 
could be used to determine if the plant can run to the 
next scheduled maintenance cycle or if additional 
maintenance must be planned.   
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NOMENCLATURE 

AAKR  Auto-Associative Kernel Regression 
ANPM Adaptive Non-Parametric Model 
DNB  Departure from Nucleate Boiling 
ECM  Expanded Condition Monitoring 
FPM  First Principle Model 
GAR  Grid Appropriate Reactor 
GPM  General Path Model 
IRIS   International Reactor Innovative and 

Secure 
NCSU North Carolina State University 
PC  Principal Component 
PCA  Principal Component Analysis 
RUL  Remaining Useful Life  
SPRT  Sequential Probability Ratio Test 
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